Python线程池 ThreadPoolExecutor 的用法
前言
从Python3.2开始,标准库为我们提供了 concurrent.futures 模块,它提供了 ThreadPoolExecutor (线程池)和ProcessPoolExecutor (进程池)两个类。
相比 threading 等模块,该模块通过 submit 返回的是一个 future 对象,它是一个未来可期的对象,通过它可以获悉线程的状态主线程(或进程)中可以获取某一个线程(进程)执行的状态或者某一个任务执行的状态及返回值:
1、主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
2、当一个线程完成的时候,主线程能够立即知道。
3、让多线程和多进程的编码接口一致。
线程池的基本使用
from concurrent.futures import ThreadPoolExecutor
import time
def spider(page):
time.sleep(page)
# 等同于print('craw1 task {} finished').format(page)
# python3.6以上支持f用法
print(f"crawl task{page} finished")
return page
with ThreadPoolExecutor(max_workers=5) as t: # 创建一个最大容纳数量为5的线程池
task1 = t.submit(spider, 1)
task2 = t.submit(spider, 2) # 通过submit提交执行的函数到线程池中
task3 = t.submit(spider, 3)
print(f"task1: {task1.done()}") # 通过done来判断线程是否完成
print(f"task2: {task2.done()}")
print(f"task3: {task3.done()}")
"""
1、使用 with 语句 ,通过 ThreadPoolExecutor 构造实例,同时传入 max_workers 参数来设置线程池中最多能同时运行的线程数目。
2、使用 submit 函数来提交线程需要执行的任务到线程池中,并返回该任务的句柄(类似于文件、画图),注意 submit() 不是阻塞的,而是立即返回。
3、通过使用 done() 方法判断该任务是否结束。上面的例子可以看出,提交任务后立即判断任务状态,显示四个任务都未完成。在延时2.5后,task1 和 task2 执行完毕,task3 仍在执行中。
4、使用 result() 方法可以获取任务的返回值。
"""
主要方法:wait
wait(fs, timeout=None, return_when=ALL_COMPLETED)
'''
wait 接受三个参数:
fs: 表示需要执行的序列
timeout: 等待的最大时间,如果超过这个时间即使线程未执行完成也将返回
return_when:表示wait返回结果的条件,默认为 ALL_COMPLETED 全部执行完成再返回
'''
from concurrent.futures import ThreadPoolExecutor, wait, FIRST_COMPLETED, ALL_COMPLETED
import time
def spider(page):
time.sleep(page)
print(f"crawl task{page} finished")
return page
with ThreadPoolExecutor(max_workers=5) as t:
# 生成任务队列
all_task = [t.submit(spider, page) for page in range(1, 5)]
# 当完成第一个任务的时候,就停止等待,继续主线程任务
wait(all_task, return_when=FIRST_COMPLETED)
print('finished')
print(wait(all_task, timeout=2.5))
as_completed
# ThreadPoolExecutorThreadPoolExecutor 中 的 as_completed() 就是这样一个方法,当子线程中的任务执行完后,直接用 result() 获取返回结果
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
def spider(page):
time.sleep(page)
print(f"crawl task{page} finished")
return page
with ThreadPoolExecutor(max_workers=5) as t:
obj_list = [t.submit(spider, page) for page in range(1, 5)]
for future in as_completed(obj_list):
data = future.result()
print(f"main: {data}")
'''
1、as_completed() 方法是一个生成器,在没有任务完成的时候,会一直阻塞,除非设置了 timeout。
2、当有某个任务完成的时候,会 yield 这个任务,就能执行 for 循环下面的语句,然后继续阻塞住,循环到所有的任务结束。同时,先完成的任务会先返回给主线程。
'''
map
# 使用 map 方法,无需提前使用 submit 方法,map 方法与 python 高阶函数 map 的含义相同,都是将序列中的每个元素都执行同一个函数。
'''
fn: 第一个参数 fn 是需要线程执行的函数;
iterables:第二个参数接受一个可迭代对象;
timeout: 第三个参数 timeout 跟 wait() 的 timeout 一样,但由于 map 是返回线程执行的结果,如果 timeout小于线程执行时间会抛异常 TimeoutError。
'''
import time
from concurrent.futures import ThreadPoolExecutor
def spider(page):
time.sleep(page)
return page
start = time.time()
executor = ThreadPoolExecutor(max_workers=4)
i = 1
for result in executor.map(spider, [2, 3, 1, 4]):
print("task{}:{}".format(i, result))
i += 1
# map输出顺序和列表的顺序相同,就算 1s 的任务先执行完成,也会先打印前面提交的任务返回的结果。
文章链接:https://juejin.im/post/5cf913cfe51d45105d63a4d0
Python线程池 ThreadPoolExecutor 的用法
python thread